
AN-12-0044

Author: Qiuliang Shi

ABSTRACT

This application note introduces an EMI & ESD enhanced application circuit of NSPGL1 and suggests some practical PCB layout guidelines to provide cost-effective protection against bulk current injection (BCI) and electrostatic discharge (ESD). According to the EMC requirement, the recommended circuit could be used as a reference in application and minor modification could be conducted based on the original circuit.

INDEX

1. HARDWARE	2
1.1.EMI & ESD ENHANCED EDITION	2
1.1.1.EMC PERFORMANCE	2
1.1.2.SUMMARY OF TEST RESULT	3
2. BOM	4
3. LAYOUT	4
4. FUNCTION PERFORMANCE STATUS CLASSIFICATION	6
5. REVISION HISTORY	7

1.Hardware

1.1.EMI & ESD Enhanced Edition

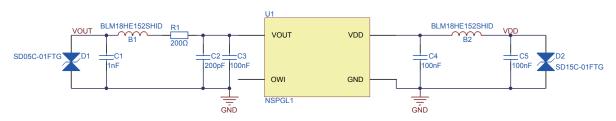


Figure 1.1 EMI & ESD enhanced application circuit

1.1.1.EMC Performance

Items	Standards	Туре	Network	Parameter	Severity
ESD(Power off)	ISO 10605:2008	Contact discharge	150pF 330Ω	±20KV	Class C
L3D(Fower on)	130 10003.2008	Air discharge	130pr 33002	±20KV	Class C

Items	Standards	Туре	Parameter	Test Level	Severity	
BCI	ISO 11452-4:2020	CBCI 0.1	0.1MH= 400MH=	200mA	Class A	
BCI	130 11432-4,2020		DBCI	DBCI	0.1MHz-400MHz	100mA

Items	Standards	Pulse Type	Severity
Transient Conducted Immunity on Other Lines(CCC)	ISO 7637-3:2016	Fast 3a, Fast 3b	Class A

Items	Standards	Pulse Type	Severity
Transient Conducted Immunity on Other Lines(ICC)	ISO 7637-3:2016	Slow+, Slow -	Class A

Items	Standards	Frequency Parameter	Test Level Severity
RI(ALSE Method)	ISO 11452-2:2019	80MHz-2000MHz	100V/m Class A

Items	Stand	lards Frequency Parame	ter Severity
RE(Radiated Emission)	CISPR 25	:2008 0.15MHz-2500MF	Hz Class 5

Items	Standards	Frequency Parameter	Severity
CE(Current method)	CISPR 25:2008	0.15MHz-108MHz	Class 5

Items	Items Standards Frequency Param		Severity
CE(Voltage method)	CISPR 25:2008	0.15MHz-108MHz	Class 5

1.1.2.Summary of Test Result

NEOTEST

Suzhou Neotest Inspection and Testing Co., Ltd.

Report No.: NEO-EMC20240624002-EN

Page: 7 of 109

6. Summary of Test Result

Chapter No.	Test Items	Mode	Page	20240624002-1	20240624002-2	20240624002-3	Remark
11.1	ESD (DUT Unpowered)	Mode2	13	Pass	Pass	N/A	N/A
11.2	BCI	Mode1	16	Pass	Pass 沿台	N/A	N/A
11.3	RE	Mode1	22	Pass	Pass	N/A	N/A
11.4	CEC	Mode1	61	Pass	Rass	THA	N/A
11.5	CEV	Mode1	77	Pass	Pass	E田音 N/A	N/A
11.6	RI	Mode1	93	Pass	Pass	N/A	N/A
11.7	CCC	Mode1	101	N/A	Pass	Pass	N/A
11.8	ICC	Mode1	106	N/A	Pass	Pass	N/A

Please contact NOVOSENSE for the detailed EMC test report of NSPGL1.

2.BOM

Comment	Designator	Footprint	Value	Туре	Supplier
TVS	D1	SOD-323	_	SD15C-01FTG	Littelfuse
TVS	D2	SOD-323	_	SD05C-01FTG	Littelfuse
Bead	B1, B2	0603	_	BLM18HE152SH1D	muRata
Сар	C1	0402	1nF	CL05B102KB5VPNC	SAMSUNG
Сар	C2	0603	200pF	CL10B201KB8NNNC	SAMSUNG
Сар	C3, C4	0603	100nF	CL10B104KB8NNNC	SAMSUNG
Сар	C5	0402	100nF	CL05E104KB5VPNC	SAMSUNG
Resistor	R1	0603	200Ω	0603WAF2000T5E	UNI-ROYAL
NSPGL1	U1	LGA	_	NSPGL1L007RRA1	NOVOSENSE

3.Layout

The TVS protects the VDDHV and OUT pins from damage caused by transient high-voltage pulses. If the applied EMC environment is harsh, the TVS with higher power can be applied at the expense of a larger package size. On the PCB layout, it is necessary to place the two TVSs as close as possible to the connector.

The C4 capacitor filters out power-supply noises and keeps the power-supply stable. This capacitor should be placed as close as possible to the U1 VDD pins. Similarly, the C1 capacitor filters out noises from the signal line and keeps the output signal stable, which should be placed as close as possible to the output connector.

The beads suppress the noises from the power & signal lines during BCI test, which should be placed as close as possible to the connectors, directly connected to the power & signal lines.

Figure 3.1 demonstrates a PCB layout example of EMI & ESD enhanced application circuit for NSPGL1.

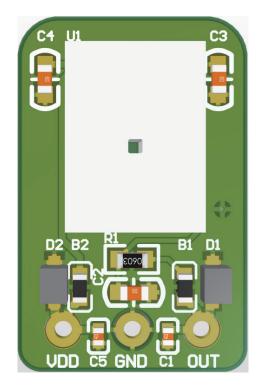


Figure 3.1 EMI & ESD enhanced application circuit PCB layout

Attention: All components should be placed at least 2mm away from the NSPGL1 for underfill process.

4. Function Performance Status Classification

Class	Description
Class A	The DUT can perform all its pre-designed functions during and after the interference is applied. The tolerances caused by the disturbance are within the design error range of the DUT.
Class B	During interference, the device under test can perform all its pre-designed functions; however, one or more indicators exceed the specified deviation. All functions automatically return to the normal working range after stopping the interference.

Class	Description		
Class C	During interference, the DUT does not perform one or more of its pre-designed functions, which affects the normal operation of the basic functions of the entire system, but it can automatically return to normal operation after stopping the application of interference.		
Class D	The DUT does not perform one or more of its pre-designed functions during the application of interference. It will not automatically return to its normal operating state until the application of interference is stopped and a simple "operation or use" reset action is performed.		
During and after the interference is applied, the device under test does Class E perform one or more of its pre-designed functions, and if it does not repa replace the device or system, it cannot resume its normal operation.			

5.Revision History

Revision	Description	Author	Date
1.0	Initial version	Qiuliang Shi	2023/08/14
1.1	Add the result of DBCI.	Qiuliang Shi	2025/09/03

Sales Contact: sales@novosns.com;Further Information: www.novosns.com

IMPORTANT NOTICE

The information given in this document (the "Document") shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party's intellectual property rights.

Users of this Document shall be solely responsible for the use of NOVOSENSE's products and applications, and for the safety thereof. Users shall comply with all laws, regulations and requirements related to NOVOSENSE's products and applications, although information or support related to any application may still be provided by NOVOSENSE.

This Document is provided on an "AS IS" basis, and is intended only for skilled developers designing with NOVOSENSE' products. NOVOSENSE reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided without notice. NOVOSENSE authorizes users to use this Document exclusively for the development of relevant applications or systems designed to integrate NOVOSENSE's products. No license to any intellectual property rights of NOVOSENSE is granted by implication or otherwise. Using this Document for any other purpose, or any unauthorized reproduction or display of this Document is strictly prohibited. In no event shall NOVOSENSE be liable for any claims, damages, costs, losses or liabilities arising out of or in connection with this Document or the use of this Document.

For further information on applications, products and technologies, please contact NOVOSENSE (www.novosns.com).

Suzhou NOVOSENSE Microelectronics Co., Ltd